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ABSTRACT 

This paper proposes an extended formulation of linear Model Predictive Control 

(MPC), for tip control on a non-minimum phase, underactuated multibody system 

consisting of two links and a passive joint moving a payload placed on the tip. The 

goal of control is the tracking of time-varying references set for the tip of the 

unactuated link. The problem has several challenges. First, the system is non-

minimum phase, because of the presence of unstable internal dynamics, that results 

in difficulties to perform model inversion and in the presence of undershoot. 

Additionally, when the usual approaches to MPC are used, reference tracking 

experiences error and delay, since MPC is intrinsically devoted to track step 

references (or piecewise ones) or to regulation problems. To overcome these issues, 

the approach proposed in this paper embeds the time-varying reference within the 

constrained optimization performed in the MPC implementation. An autonomous 

state-space model of such a reference is formulated through the Dynamic Mode 

Decomposition (DMD) theory. The resulting controller is therefore named MPC with 

Embedded Reference Dynamics, MPC-ERD. The embedding of the reference allows 

tracking time-varying profiles with negligible delay and error, also without any 

feedforward action. To improve tracking performances, an embedded integrator is 

introduced by exploiting the difference variables, leading to the so-called “velocity 

form” of MPC. Constraints on the motor torque are also included in the optimization 

problem used to compute the control action, to ensure feasibility and to avoid 

unexpected control saturations. The MPC-ERD is numerically validated in this paper 

and the results are compared with those provided by standard MPC with embedded 

integrator (also including output error constraints).  

Keywords: Underactuated systems, Non-minimum phase, Tip tracking control, 

Model Predictive Control, Reference dynamics. 

1 INTRODUCTION 

Accurate control of underactuated multibody systems (i.e., when the number of independent 

control inputs is less than the number of degrees of freedom) is a challenging issue in several 

robotic applications, such as cranes, robots with passive joints, flexible joint or flexible links [1]. 

In the last years a lot of effort has been devoted, within the multibody community, to develop 

effective controllers for fast and effective trajectory tracking control. Basically, these methods can 

be grouped into feedforward and feedback control. Feedforward is an open loop strategy aimed 

at computing the time history of the control forces allowing the controlled system to track the 

desired reference, usually by exploiting a detailed system model to be inverted; feedback, in 

contrast, exploits the measurements of a proper set of sensors to compute such control forces and 



to reject disturbances, especially when applied to the unactuated coordinates. On the one hand, 

feedforward techniques are usually not enough to ensure good tracking performances because of 

the presence of model uncertainty and external disturbances: hence, they are usually implemented 

together with feedback ones. On the other hand, feedback control alone might be not satisfactory 

to track time-varying reference trajectories with high frequency harmonic components, especially 

those beyond the speed loop bandwidth. 

The difficulties in controlling underactuated multibody systems are exacerbated in the case of 

non-minimum phase systems, i.e., with unstable internal dynamics, for both feedback and 

feedforward control. First, if the system features an odd number of real right-half plane zeros in 

the transfer function (of the linearized dynamics in case of nonlinear systems) from the input force 

to the controlled position, undershoot is experienced in tracking the reference trajectory. 

Moreover, if a time-varying reference trajectory is specified, tracking delay and error become 

relevant. Secondly, model inversion is challenging and requires pre and post-actuation, or 

approximated (i.e., stabilized) solutions [2]. 

In this paper, precise trajectory tracking in underactuated non-minimum phase multibody systems 

is solved by adopting an improved formulation of Model Predictive Control (MPC). The idea of 

standard MPC is to solve a constrained optimal control problem over a receding horizon to 

compute the optimal sequence of control inputs. MPC was originally applied to control power 

plants and chemical processes [3], and lately it has been applied in regulation problems in motion 

control, where one or more outputs are controlled with the goal to assume reference values in a 

finite time after a step change of the references [4–7]. Given the ability to include both input and 

output constraints directly into their optimization process, which is performed at each time step, 

recently MPC algorithms have shown a great increase of interest also in the field of cable-driven 

robots [8], which represents a challenging research area from the control point of view, since 

cables cannot push, but only pull. Furthermore, MPC algorithms have also been used to evaluate 

the signal that should be given as input to feedforward or feedback linearization controllers, by 

properly exploiting the knowledge of the tracking error [9]. However, a critical issue of standard 

MPC schemes consists of keeping the reference signal constant during the prediction horizon, 

thus leading to a piecewise-constant approximation of a time varying trajectory; therefore, the 

reference is usually tracked with a lag [10].  

To overcome these difficulties, which increase in the case of underactuated non-minimum phase 

systems, an improved formulation proposed by the Authors in [11] is adopted in this work to 

ensure precise, and with negligible lag, tracking of a time-varying reference commanded for the 

tip of a two-link system. Additionally, thanks to the embedding of the reference, no feedforward 

is needed, thus overcoming the difficulties in solving the inverse dynamics problem for this kind 

of systems. 

2 SYSTEM MODEL 

Let us consider the model of an underactuated multibody system, formulated through ordinary 

differential equations and hence through n  independent coordinates θ ∈ ℝ𝑛 ( n  is the number of 

degrees of freedom, DOFs): 

 ( ) ( ) ( ) ( ) ( , ) ( ) ( )t t t t+ + + + =M θ θ Dθ Kθ d θ θ g θ Pu  (1) 

( )M θ , D , K  ∈ ℝ𝑛×𝑛 are, respectively, the mass, damping and stiffness matrices; ( , )d θ θ ∈ ℝ𝑛 

is the vector of gyroscopic and centrifugal terms; ( )g θ ∈ ℝ𝑛 contains gravity force contributions; 

( )tu ∈ ℝ𝑛𝑖𝑛 is the vector of the inn  independent control forces, that are exerted through the control 

force distribution matrix P ∈ ℝ𝑛×𝑛𝑖𝑛. Whenever inn n , the system is said to be underactuated.  

The control technique proposed in this paper is developed by means of the linearized model, that 

is effective when small displacements about the equilibrium configuration are considered. 

Deviations from the linear model are considered as uncertainties that the feedback controller 

should be able to compensate for. By linearizing the model about a stable equilibrium point, the 



following set of linear ordinary differential equations is obtained ( eM , eD , eK  ∈ ℝ𝑛×𝑛 arise 

from the linearization of Eq.(1)): 

 ( ) ( ) ( ) ( )t t t t+ + =e e eM θ D θ K θ Pu ,  (2) 

A discrete-time, first-order, state-space representation is required to design MPC scheme, thus 

introducing the state vector 
T

 =  dx θ θ ∈ ℝ2𝑛, the output vector ( )ty ∈ ℝ𝑛𝑜𝑢𝑡 (with 𝑛𝑜𝑢𝑡 being 

the number of controlled outputs, that is assumed to be equal to 𝑛𝑖𝑛, as usually done in the control 

of underactuated multibody systems), and by discretizing the linearized model in Eq. (2) (through 

any of the usual techniques used in multibody system dynamics). The following model is 

obtained, by introducing matrices dA ∈ ℝ2𝑛×2𝑛, dB ∈ ℝ2𝑛×𝑛𝑖𝑛, dC ∈ ℝ𝑛𝑜𝑢𝑡×2𝑛 ( k  is the discrete 

time index): 
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To improve tracking performances, an embedded integrator is introduced by exploiting the 

difference variables, leading to the so-called “velocity form” of MPC: 
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Finally, the state vector is augmented to include the output, 
( )

( )
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state-space model is defined accordingly ( A ∈ ℝ𝑛𝑎𝑢𝑔×𝑛𝑎𝑢𝑔, B∈ ℝ𝑛𝑎𝑢𝑔×𝑛𝑖𝑛 and C∈ ℝ𝑛𝑜𝑢𝑡×𝑛𝑎𝑢𝑔, 

with 2aug outn n n= + ): 
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3 THE MPC OPTIMIZATION PROBLEM 

The basic idea of MPC is to solve an optimal control problem formulated through a cost function 
J  over a receding horizon, that is constrained by the system dynamics and by bounds on the 

control variables. The optimization problem is solved at each time step of the control loop by 

exploiting the prediction of the future trajectory of the states (and hence of the controlled outputs), 

thus leading to the optimal sequence of the control input. Two meaningful parameters are defined: 

the prediction horizon pN ∈ ℕ+, that is the number of future samples that are predicted through 

the dynamic model and hence the horizon where optimization is performed, and the control 

horizon cN ∈ ℕ+ ( c pN N ), that is the number of samples where the optimization result will be 

spread. 

In trajectory tracking problems, the cost function usually assumes the following expression: 

 ( ) ( ) ( ) ( ) ( )
1 1

22 2

1 0

| |
p c

N N

p

i i

J k k i k k i k k N k

− −

= =

= − + + + + − + d dQ R S
r y Δu r y  (6) 

Three tuning parameters are adopted, as often done also in optimal control: matrices Q ∈

ℝ𝑛𝑜𝑢𝑡×𝑛𝑜𝑢𝑡 and R ∈ ℝ𝑛𝑖𝑛×𝑛𝑖𝑛 weight respectively the tracking error and the control input effort; 

S ∈ ℝ𝑛𝑜𝑢𝑡×𝑛𝑜𝑢𝑡 is the weighing matrix related to the so-called terminal cost term. J  can be also 

written in the following matrix form, by means of ( ), , ,diag=yW Q Q S ∈

ℝ𝑛𝑜𝑢𝑡𝑁𝑝×𝑛𝑜𝑢𝑡𝑁𝑝 and ( ), ,diag=ΔuW R R ∈ ℝ𝑛𝑖𝑛𝑁𝑐×𝑛𝑖𝑛𝑁𝑐: 

 ( ) ( )
T T

J JJ = − − +v y v v Δu vr y W r y Δu W Δu  (7) 



Vector Jr ∈ ℝ𝑛𝑜𝑢𝑡𝑁𝑝 represents the reference trajectory along the prediction horizon; its 

formulation will be discussed in the following Section since this paper proposes a novel, effective 

representation suitable for trajectory tracking. 

Constraints on control vector u  are also included in the optimization problem, to ensure 

feasibility and to avoid unexpected control saturations. In particular, box constraints are defined 

through minu  and maxu , ( )k min maxu u u  (the inequalities are element-wise), which are 

subsequently translated into bounds on the difference control ( )kΔu  through minΔu  and maxΔu : 

 ( )k min maxΔu Δu Δu  (8) 

4 REFERENCE EMBEDDING 

Standard MPCs usually define vector Jr  as follows [12]: 

 ( ) ( )
out out out out

T

J n n n n k k = =  stdr I I I I r N r  (9) 

where ( )kr ∈ ℝ𝑛𝑜𝑢𝑡 is the thk  sample of the reference signal and 
outnI ∈ ℝ𝑛𝑜𝑢𝑡×𝑛𝑜𝑢𝑡 is the identity 

matrix of proper dimensions. However, as it will be shown in Section 5, such a formulation is 

correct just when constant, or piecewise-constant, set-points should be tracked; for this reason, 

most of the papers in the literature exploits MPC to track step signals. In contrast, when time-

changing references should be tracked, such as time-varying motion laws, this formulation is no 

longer effective to track the reference without delay. Indeed, in the standard MPC formulations, 

the reference signal is kept constant over the prediction horizon lasting pN  samples by means of 

matrix 
out out out out

T

n n n n
 =  stdN I I I I ∈ ℝ𝑛𝑜𝑢𝑡𝑁𝑝×𝑛𝑜𝑢𝑡, therefore leading to a piecewise-

constant approximation of the actual reference. 

To overcome this issue, the novel idea of the MPC-ERD is to adopt a different formulation of Jr , 

by embedding the model of the time-varying reference over the prediction horizon. In particular, 

an autonomous state-space representation of the reference is chosen, by assuming the following 

state-space model through a proper definition of the dynamic matrix 
r

A , the output matrix 
r

C  

and the “internal” state vector ( )k
r

x  of the reference model itself: 
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To accurately represent the reference dynamics, ( )k
r

x  should be defined as follows, by including 

the discrete-time position ( )kp , speed ( )ks , and acceleration ( )ka : 
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The dynamic matrix 
r

A  can be computed by exploiting the theory of Dynamic Mode 

Decomposition (DMD) [13] as finding the best-fit linear operator that allows writing the 

following relationship: 

 =l

r r rX A X  (11) 

where sN ∈ ℕ+ is the number of samples that is chosen to represent the desired trajectory: 
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Finally, rC assumes the following form: 

 
out outn n

 =  rC I 0  (13) 

Once the autonomous state-space model is formulated, the predicted reference can be written 

through the following matrix equation 

 ( )J k= erd rr N x , (14) 

where erdN ∈ ℝ𝑝𝑟𝑁𝑝×𝑛𝑟 is defined as follows: 
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The resulting cost function J is quadratic. Hence, since constraints are linear inequalities, the 

constrained optimization problem becomes a standard quadratic programming problem that can 

be solved through standard solvers used for traditional MPC algorithms used for regulation or for 

tracking step changes of the reference. 

5 NUMERICAL RESULTS 

The method is numerically applied to the planar two-link robot arm with two revolute joints 

shown in Figure 1, which is often used to mimic a flexible arm, that is supposed to move a payload 

located on the tip. Joint A is actuated by an electric motor, while joint B is passive with a torsional 

spring. In particular, the actuated link, i.e., the one connected to the actuated joint A, has length 

1l  and mass 1m , while the passive link, which is the one whose extremum points are joint B and 

the tip, is characterized by a length 2l  and a mass 2m . The moment of inertia of the rotor of the 

DC motor driving the actuated link is indicated with mJ . The rotational spring that couples the 

two links is characterized by a stiffness sk , while the mass at the tip location is denoted with tipm . 

The values of all the mentioned system parameters are reported in Table 1. It is useful to notice 

that the mass at the tip location, which is definitely bigger than the sum of the masses of the links, 

causes a moment of inertia, with respect to joint A, that is greater of several order of magnitude 

than the one of the electric DC motor, leading to a highly challenging scenario from the control 

design point of view. The system has two degrees of freedom (1,  2 in Figure 1) and just one 

driving torque, denoted with mτ , is adopted to control the motion. By choosing the tip translation 

in the X direction as the controlled output, which is denoted with tipx , then the system is non-

minimum phase [11], thus making the control design more challenging and providing a severe 

test for the proposed approach. Even though only a sample result is shown in this paper, the 

method is general and can handle other trajectories. To show a meaningful application, a desired 

reference trajectory, recalling a pick-and-place task, is defined from the pick location to the place 

one and the displacement between the two points is described through a 5th-degree polynomial 

motion law. More precisely, the pick location and the place one are selected to be equal to 

pickx 0.137 m= −  and placex 0.137 m= , respectively, while the interval time between these two 



locations is set equal to p-pT 2 s= , which is followed by an additional rest interval of restT 0.5 s= . 

To fairly reproduce a real-case scenario, in the simulative environment the system is supposed to 

be equipped with two encoders characterized by 4000 pulses-per-revolute in order to measure the 

angular displacements 1 and  2, while the related speeds are estimated through filtered numerical 

derivatives. 

 

Figure 1. Simplified scheme of the underactuated robotic arm. 

Table 1. System and controller parameters. 

Parameter Description Value 

1m  Mass of actuated link 0.050 kg  

2m  Mass of passive link 0.021 kg  

1l  Length of actuated link 0.170 m  

2l  Length of passive link 0.155 m  

mJ  Motor inertia 
5 22.7 10 kgm−  

sk  Stiffness of rotational spring 0.1772 Nm/rad  

tipm  Mass at tip location 0.250 kg  

pN  Prediction horizon 110  

cN  Control horizon 1  

yW  Error weighing matrix 1
out pn N I  

ΔuW  Input weighing matrix 1
in cn N I  

max minu , u  Maximum and minimum torque 3.2 Nm  

The trajectory tracking responses of the proposed MPC-ERD and the standard MPC with 

embedded integrator are reported in Figure 2, together with their respective tracking errors. To 

have a fair comparison, the control tuning parameters, such as the prediction horizon pN , the 

control horizon cN  and the weighing matrices yW  and ΔuW , have been considered the same for 

both controllers. The values of all the control parameters are reported in Table 1. By looking at 

Figure 2, it can be noticed that standard MPC formulation is not able to ensure a good trajectory 

tracking response in the presence of a time-varying reference and a non-minimum phase system, 

while the proposed MPC-ERD algorithm allows to achieve very good performances from the 

trajectory tracking point of view, leading to an almost zero-delay response. In particular, by 

denoting the tracking error with tipe , it can be observed that, in the presence of the proposed 

control algorithm, a lower tracking error is achieved, which is characterized by a maximum 



absolute value of 1.20 mm  and a Root Mean Square (RMS) value of 0.55 mm ; on the other hand, 

in the presence of a standard MPC with embedded integrator, the maximum absolute tracking 

error results to be equal to 21.10 mm , while its RMS value is 12.10 mm . Therefore, thanks to 

the MPC-ERD algorithm, it has been possible to achieve an improvement of 94.3 %  in terms of 

maximum tracking error and an improvement of 95.4 %  in terms of RMS error, by requiring at 

the same time a similar amount of motor torque, as it can be seen in Figure 3. 

 

Figure 2. Trajectory tracking responses and errors with the proposed MPC-ERD (a,b) and with standard 

MPC with embedded integrator (c,d). 



 

Figure 3. Motor torques with the proposed MPC-ERD (blue) and with standard MPC with embedded 

integrator (red). 

To further stress the benefits coming from proposed MPC-ERD, an additional benchmark is 

provided in the following, which exploits the capability of standard MPC algorithms to include 

also output constraints, together with input ones, in the optimization process. Since the maximum 

absolute tracking error in the presence of standard MPC with embedded integrator and only input 

constraints was equal to 21.10 mm , as reported in Figure 2, an admissible error band of 

16.88 mm  (which indicates a decrement of 20 %  with respect to the case with only input 

constraints) is now considered and included into the optimization process as output error 

constraints. Through a proper tuning of this further benchmark, denoted with “Benchmark 2” in 

Figure 4, it can be noticed that a lower tracking error has been achieved, compared to the standard 

MPC formulation with embedded integrator and only input constraints, but at the cost of a huge 

increment of the required motor torque. This final aspect underlines the infeasibility of this 

benchmark on a possible real setup and it clearly states the supremacy of the proposed MPC-ERD 

algorithm, which is able to ensure very low tracking error requiring, at the same time, a feasible 

motor torque. 



 

Figure 4. Trajectory tracking response (a), tracking error (b) and required motor torque (c) with standard 

MPC with embedded integrator and both input and output constraints. 

6 CONCLUSIONS 

An improved control scheme based on Model Predictive Control is proposed by the Authors and 

applied in this paper for precise tip-tracking control in an underactuated, non-minimum phase 

multibody system. The proposed control scheme, named MPC with embedded reference 

dynamics (MPC-ERD), includes an autonomous, discrete-time, state-space, representation of the 

time-varying reference within the optimization used to compute the optimal sequence of control 

actions over the prediction horizon. The Dynamic Mode Decomposition is used to formulate such 

an autonomous model and, thanks to the reference inclusion, precise tracking with negligible 

delay is ensured without requiring feedforward controllers, which are usually difficult to design 

in the case of underactuated, non-minimum phase systems. To reduce the computational effort, 

the method is based on a linearized model that ensures an accurate representation in the case of 

small displacements; nonlinearities are uncertainties that the feedback controller should be able 

to compensate for. Numerical results, obtained through a nonlinear model that also includes a 

simplified actuator dynamics and the measurement noise arising from the encoder quantization, 

corroborate the method correctness and effectiveness. 
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